nd the anomalous above 350° K 7). neasurements the t 41° K was esw anomalies that will attempt here li data with the sion and specific sible relationship nd high tempera-

ON ANOMALIES

mperature of the 935° K) the three 1, α_2 and α_3 (sub-[100], [010] and normally affected 1 decreases with minimum in the ases continuously 100° and 935° K. t 50° K, decreases eximately 350° K tive temperature ratures. α_3 has a ture dependence, 10st five between

ic moduli on the can be illustrated on:

ansion coefficient, ant pressure, V is e adiabatic comis the Grüneisen resent case, may volume of 1, the mal modes of the sity of electronic and 3, the energy ese contributions n the basis of the butions:

$$\Gamma_{\rm v} = \frac{C_{\rm g}}{C_{\rm p}} \Gamma_{\rm g} + \frac{C_{\rm e}}{C_{\rm p}} \Gamma_{\rm e} + \frac{C_{\rm m}}{C_{\rm p}} \Gamma_{\rm m} \tag{5}$$

where the subscripts g, e and m refer to the lattice, electronic and magnetic contributions respectively. In most metals Γ_g varies with temperature with values varying from 1.5 to 3. At low temperature, where $C_{\rm e}$ and $C_{\rm m}$ may be relatively large, a negative $\Gamma_{\rm v}$ and therefore a negative α_v may arise, as in the case of uranium below 45° K, from the $\Gamma_{\rm e}$ and/or $\Gamma_{\rm m}$ contributions. Because of the absence of compressibility values below 42° K we cannot at the present time evaluate $\Gamma_{\rm v}$ in this interesting temperature range. The other anomaly, α_2 above 350° K, can, however, be analyzed quantitatively using the tensor form of the Grüneisen relation to determine whether a negative $\Gamma_{\rm v}$ is necessarily involved in this situation 14). The following relations are thus obtained:

$$\frac{V}{C_{p}} \alpha_{1} = (s_{11} \Gamma_{1} + s_{12} \Gamma_{2} + s_{13} \Gamma_{3}) =
= \frac{\Gamma_{1}}{E_{1}} - \frac{\sigma_{21}}{E_{2}} \Gamma_{2} - \frac{\sigma_{31}}{E_{3}} \Gamma_{3}
\frac{V}{C_{p}} \alpha_{2} = (s_{12} \Gamma_{1} + s_{22} \Gamma_{2} + s_{23} \Gamma_{3}) =
- \frac{\sigma_{12}}{E_{1}} \Gamma_{1} + \frac{\Gamma_{2}}{E_{2}} - \frac{\sigma_{32}}{E_{3}} \Gamma_{3}
\frac{V}{C_{p}} \alpha_{3} = (s_{13} \Gamma_{1} + s_{23} \Gamma_{2} + s_{33} \Gamma_{3}) =
- \frac{\sigma_{13}}{E_{1}} \Gamma_{1} - \frac{\sigma_{23}}{E_{2}} \Gamma_{2} + \frac{\Gamma_{3}}{E_{3}},$$
(6)

which reduces to,

$$\alpha_{\mathbf{v}} = \frac{C_{\mathbf{p}}}{V} (\beta_{[100]} \Gamma_1 + \beta_{[010]} \Gamma_2 + \beta_{[001]} \Gamma_3). \tag{7}$$

 Γ_1 , Γ_2 and Γ_3 are the Grüneisen coefficients which apply for uniaxial thermal strains in the [100], [010] and [001] directions respectively and the same subscript scheme applies to E_1 , E_2 and E_3 . The solutions for Γ_1 , Γ_2 , Γ_3 and Γ_v obtained from the simultaneous equations using the s_{ij} values from the present measurements, the α_i computed by Lloyd $et~al.^{13}$) and the total C_p ?) are shown in the curves of fig. 9. All of the Γ_j rise quite sharply upon cooling below 100° K; Γ_v is relatively independent of temperature between 75° K and 700° K, with

a value of 2.35 and decreases to 2.15 at 900° K. Γ_1 varies from 2.68 to 2.81 in this range and Γ_3 undergoes the greatest changes with limits of 2.45 and 2.97. Γ_2 is remarkably constant between 175° K and 300° K and decreases from 1.6 to 1.15 above 300° K. Although the decrease in Γ_2 may be a contributing factor, the negative α_2 arises, primarily, from the abnormally large Poisson's ratio σ_{32} and the large negative temperature dependence of E_3 .

4.2. THE ANOMALOUS SPECIFIC HEAT

Fig. 10 shows the temperature dependence of various contributions to the total specific heat for alpha uranium. The $C_{\rm p}$ curve between 0° and 300° K is that given by Flotow and Lohr ¹⁵) and the higher temperature part is due to Ginnings *et al.*?). The specific heat at constant volume, $C_{\rm v}$, was derived using the thermodynamic relation

$$C_{\mathbf{v}} = \left(\frac{\beta_{\mathbf{v}}}{\alpha_{\mathbf{v}}^2 VT + \beta_{\mathbf{v}} C_{\mathbf{p}}}\right) C_{\mathbf{p}}^2,\tag{8}$$

at temperature T. The lattice specific heat that was calculated from the Debye model using $\theta_{\rm D}$ of 200° K ¹⁶) is noted as the dashed line, $C_{\rm D}$. The experimental lattice specific heat due to temperature change only, $C_{\rm V}\left(V_0,T\right)-\gamma_0 T$, was computed from the $C_{\rm V}$ data by assuming a temperature independent electronic specific heat coefficient, $\gamma_0=26\times 10^{-4}$ cal/mol·deg² ¹⁶); and then correcting for the change in $C_{\rm V}$ with volume using the relation

$$\left(\frac{\delta C_{\rm v}}{\delta V}\right)_T = T \frac{\left\{\beta_{\rm v}(\mathrm{d}\alpha_{\rm v}/\mathrm{d}T) - \alpha_{\rm v}(\mathrm{d}\beta_{\rm v}/\mathrm{d}T)\right\}}{V^2} \frac{C_{\rm v}}{C_{\rm p}}.$$
 (9)

The resulting curve approaches the $C_{\rm D}$ curve in the range of 100° to 120° K. Below 100° K the specific heat in excess of $C_{\rm D}$ increases with decreasing temperature; this reflects either a decreasing $\theta_{\rm D}$ or an increasing contribution from the free electrons, or from a magnetic moment. Above 120° K the $C_{\rm v}(V_0,T)-\gamma_0 T$ curve follows the Debye function reasonably well, allowing for experimental error, up to approximately 400° K where it has a significant positive curvature and increases above 3 R at higher temperatures.